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ON THE PARTIAL STABILITY AND CONVERGENCE OF MOTIONS* 

I. TEREKI and L. KRATVANI 

A sufficient condition of stability of the zero solution of a system of ordinary 
differential equations with respect to a part of variables, and for these variables 
to approach constant values over prolonged time, is obtained using the modified 
second Liapunov's method. The results are applied in the investigation of condit- 
ions of asymptotic approach of motions of unsteady mechanical systems to one of the 
equilibrium positions in the presence of dry friction. A symmetric gyroscope sus- 
pended in gimbals is used as an example. 

It is often observed in mechanical systems subjected to dissipative forces that the gen- 
eralized coordinates (or part of them) approach along motions constant values and the general- 
ized velocities approach zero after long time intervals, i.e. the system tends to "stop 
asymptotically" /l-55/. 

Asymptotic stability and asymptotic stability relative to a part of variables /l,2/ are 
particular cases of this effect which results in the generalized coordinates approachingthose 
of the equilibrium position. A sufficient condition of existence of this phenomenon is given 
below. The result is a generalization and further development of several previous investiga- 
tions /6,7/, and makes possible a simple derivation of the Liapunov-Malkin theorem /1,8/ on 
the existence of a limit of the part of coordinates, and obtain its extension to nonautonom- 
ous systems using the second Liapunov's method. Its application in investigationsofholonomic 
mechanical systems subjected to potential, gyroscopic, and dissipative forces /3- 5/ shows 
that the "asymptotic stopping" is a particular characteristic of the dry friction effect /9/. 

1. Consider the system of differential equations 

x’=X(&x), x(t,O)=o, x=(y1, . . .) y,, zl, . . ., Z*)T (1.1) 
n>P>O*Pfc7=n 

where Xis a real n-vector. Introducing the notation 
reduce system (1.1) to the form 

y = (yr, . . . . yp)T, z = (z,, . . ., z&T, we 

y’ = Y (t, z), 2’ = 2 (t, 5) (1.2) 

We denote 

Assume the vector functions Y and 2 to be continuous in the domain t E R, = IO, on), 
IIyII <H, O<llzll<co and such that solutions (Y(t; to, X0), z(t; to, X0)) of system (1.2) continuou- 
sly depend on initial data X0= (Y (to; to, X(l), 2 (to; to, X0)) and are z-continuable /2,10/. When 
the continuous function V:r, +R satisfies the local Lipschitz condition with respect to 
x in the set 

ry={(t,~):~ER+,IIYII<H’,O\<IIzIl<~)(O~H’~H) 

we call, by virtue of system (1.1) /ll/, function 

v’ (t, 2) = ;lr$up (V (t + h, 2 + hX (t, 5)) - v (t, x))lh 

the derivative of function V. 
We denote by K the class of strongly increasing functions a :R+ +R+, for which a(O)= 0. 

Theorem. Assume that there exists for system (1.2) a continuous function 
which satisfies the local Lipschits condition with respect to 

V:l-“-tR 
x and, also, the following 
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conditions on the set r,: 
1) v(t, z) 20 i 
2) there exists functions 

OEK and zu:R+4&<m) 

such that 

v' (4 4 < - m (II Y II) II y (6 4 II -I- w @I 
Then 
a) if V(t,O)+O as t-+00, the zero solution of system (1.2) is y-stable; 
b) for any solution s(t) = (g(t), z(QT of system (1.2) for which ~~~(t)~~<< when t 9 to 

function y(t) has a finite limit as t +-co. 

Proof. Let s(t) be a solution of (1.2), O<y'<y"<N'. Assume that there exist 
X, t’, i, k (T < t’ < t”, 1 < k < p), such that 1 yk(t’)I = r’, (yk (t”) 1 = 7”. Then denoting U(t) =: 
V (t, s(t))? we obtain 

1” i” t” 

u (1’) - v (t”) > - j V’ (t, z(t)) dt > - jw(t)dt+ Sw(lYk(l)l)lYh(t,z(t))ldt~-~s(s)LI (1.3) 
1' 1' T 

v" 
j wf7)dr= 1jT,t",y', y") 
Y' 

a) let toER+ and e> 0 be specified. By virtue of conditions 

there exist 6,(0<6,<el(Zp)) and T> to, such that ~~~~~(6~ and T< i imply the existence 

of V(T, x) <I (T, t”, e/(Zp), e/p). Since solutions are continuously dependent on initial data, 
there exists a 6=6(e, fo)>O such that for I[zoll<S the inequality Ils(t: to, 4Il<6, is 
satisfied in the interval h&f’]. Let us prove that when t> to we have II Y (C tot $0) II -==I fJ t 
i.e. zero solution of system (1.2) is y-stable. Otherwise there would exist numbers t’, t”, 
k (X < t’< t”, 1 <k <p) such that 1 yk(t’) 1 = E/&I), 1 yk(f)l -I e/p. Then by virtue of (1.3) 

but this contradicts the definition of 6,. 
b) If the theorem is false, there exist numbers y’, y”, k (O<$<r”, 1 <k<p) and sequenc- 

ies (t;}, {tr"} such that 4 < ti' < ti” < tfhl, / yk(ti‘) 1 = y’, I gR(t[) I = y”(i == 1, 2, . . .) , and then 
by virtue of (1.3) 

which contradicts 
This theorem 

Definition 
tion with respect 

Y” li” 

v(ti”)<u(to)-is w(z)dr+S w(s)ds-+--cm (i-m) 
Y’ IO 

condition 1). 
can also be used for deriving the conditions of asymptotic y-stability. 

/12/. The zero solution of system (1.2) has the property of weak attrac- 
to yr if for any t,ER, there exists a 0>0 such that 

Iim inf II y (t; to, 50) II = 0 for 11 z. I( < u 
kr 

Corollary 1.1. If the conditions of Theorem 1.1 are satisfied and v(t,O)-+ O(t+l-a), 

the property of weak attraction with respect to y hasas aconsequencethe y-stability of the 

zero solution. 

Corollary 1.2. If there exists a nonnegative function V : l’u -+ R (V (t, 0) = 0) whose 

derivative by virtue of system (1.2) is negative definite with respect to y and function Y 
is bounded on set rvr the zero solution of system 11.21 is asymptotically y-stable. 
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Proof. Function v'(t,z) is negative definite with respect to I, hence there exists a 
function t E K such that V' (t.z)< -c (j #ii). Let #I' (t,~) ij< N ((t, s) E I',). Then V' (t, 4 S - (c (II it II/W II 
7 (8, 8) I/ and the conditions of Theorem 1.1 are satisfied. Since, on the other hand, V>O and 
function V’ is negative definite with respect to Y, the zero solution has the property of 
weak attraction with respect to J. 

Remark 1.1. Corollary 1.2 differs from the generalization of Marachkov's theorem for 
partial stability /lo/ only in that the condition of positive definiteness of function V has 
not been stipulated. It should be, however, pointed out that in conformity with the method in 
/13,14/ Corollary 1.2 implies the definite positiveness of function V with respect to y. 

By corollary 1.2 the property of attraction is ensured by the negative definiteness of 
function Tr: In the following statement we formulate the sufficient condition for the prop- 
erty of attraction, using function Y. 

Lemma. If there exist continuous functions a, b:R++R and zo>Osuch that 

for all to > 0 and 

the zero solution has the property of attraction with respect to y. 

Proof. It follows from (1.4) that for any solution of system (1.2) 

Idi 5 ZY= WY (8, =, Ml d 2a (t)bfli Y (1) ij=) 

By virtue of properties of functions a and b the maximum solution of the Cauchy problem 

(1.4) 

[r' = 2u (t}b(z);r(to) = TO] is determined for t&to, and liminf+,z* (t) = 0 /ll/. On the other hand, 
by the basic theorem of the theory of differential inequalities /ll/ jy((t)/P(P(t) when ii! 
p<rs, hence solution x(t) is determined when t>to and ~minf~_nV(~)n=O, i.e. the zero solu- 
tion has the property of weak attraction with respect to y- 

2. Consider the system 
y' = Y(h x)* 2' = A (t):: + Z(&z) (2.1) 

where x, y, z, Y, Z are the same as in (1.2), and A is a continuous matrix function G?XP 
determinate on R,. Let us assume the existence of constants c>O, O<y&i, such that on 
the set rV 

II y ($9 2) II < c II = IP, II 2 6 4 II = Q (II .z II) (+ -+O) (2.2) 

The equations of motion of many mechanical systems can be reduced to form (2.1) /3-55/. 
Liapunov has shown /l/ that, if matrix A is constant, its eigenvalues have negative realparts 
and 
limit ii i' 

the zero solution of system (2.1) is then stable, and function y(t) has a finite * . t-co. That theorem was extended in /15/ to the case when matrix A depends on t 
and O<YCi, but proof was only given with additional constraints on function A (t), Using 
the theorem proved above, the Liapunov method can be readily used in the case of any arbitrary 
matrix function A (0. 

Corollary 2.1. If the zero solution 

u' = A (t) a (2.3) 
of the system is exponentially asymptotically stable, the zero solution of system (2.1) is 
stable, asymptotically Z.-stable, and for fairly small initial values of Ilz(t,)ll function y(t) 
has a finite limit as t-Woo. 

Proof. Since the zero solution of system (2.3) is exponentially asymptotically stable, 
there exists a continuous function V: R+ x Rq+R such that 

%R 2 Q< V (t, a)f %,I *I. I V (I, f ) - V (6 p’) 14; aal I - d 1. Vu.,) (t.4 5 -urfi 21 

By virtue of (2.2) there exist constants a,>0 and R' (O<~*<R’), such that 
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Y'(,,,) (L. 2)6 Y'(2.9) (g. 3) + % If2 (G x) II < -a) 11 P /I (2._1! 

when irIf<H". Function W(t,=)= P'((f,z)+- el#[with fixed number a(0 < c<yc~,a~~-'ic) satisfies the 
local Lipschitz condition for l[zB>O, and 

W'(,.,) 07 4 < yv v-l (f, Z)V'(,,l) (L, 4 -I- e II y (:* 4 118 --a,ll Y (t, 4 n (a, = -8 Jr ycwpic > 0) (2.5) 

for 1[2[/<HH', IIz#>O. If for the solution (y(t),z(t))= of system (2.1) r(T)=O, then z(t)=u and 
because of condition (2.2) y(t)~y(T) for t>, T. Hence it is sufficient to investigate only 
such solutions for which llz(t)ll>O for t> to. By virtue of properties of functions P,W and 
estimates (2.4) and (2.5) the zero solution of system (2.1) is stable with respect to z and 
asymptotically z-stable /lo/. Consequently, among solutions with fairly small initial 
values, inequality (2.5) is satisfied. This shows that the theorem in Sect.1 is applicableto 
system (2.1) and function W, which implies the existence of a limit of function Y (0 as 
t-CO. 

Remark 2.1. When y=i, then A (0 is bounded and Y(t,zf is continuously differenti- 
able, and stability and asymptotic z-stability are implied by Thoerem 3 in /16/, where stab- 
ility properties of the zero solution of system of the type of (2.1) were investigated in the 
first approximation under rather general conditions imposed on function Y(t, 2). 

3. Consider the holonomic mechanical system with time-dependent constraints, defined by 
the Lagrange equation 

--&$-+Q, L=Lz+L1+Lo (3.1) 

G? = Ii, (q.)TA tt, 4)9‘, L, = B (@Tq', L, = &l (& 4) 

where q=R, is the vector of generalized coordinates, A,B,L, have continuous partial deriv- 
atives, and there exists constant cc >O such that 

The system is subjected to dissipative and gyroscopic forces whose resultant is denoted 
by Q = Q(t, q, q'), hence Qrq' CO. Let q = q’= 0 be the equilibrium position of system (3.1). 

Corollary 3.1. Assume that there exists a function oE K such that the inequality 

QT(t> 43 q-1 Q’ < - w (II cI ii) Ii q’ II (3.2) 

is satisfied, and that in space (t, q, q’) cz Raw’ on set I?, L, < 0, aL!dt > 0. 
Then 
a) if Lo (t,O)sO when t>O, the equilibrium position q=q’=O of system (3.1) is 

stable: 
b) any motion q(t) of system (3.1) for which 11 q(t)11 < H' when t > to has a finite limit 

as t +m. 

Proof. Matrix A is positive definite, hence system (3.1) can be represented in the 
form 

a 
zq = 4', &B. = F (t, 4, Q') (3.3) 

It was shown in /17/ that 

--&(L,-&)= - &-QTq. (3.4) 

Consequently the derivative of Liapunov is function V= L,--Lo satisfies by virtue of 

system (3.1) the inequality V (t. q, 9') Q "-0 (I/ Q‘ II) I/ 9’ j/l Since function v is positive defin- 

ite relative to q' and V'< 0, the equilibrium position q= q' = 0 is q'-stable /lo/. Since, 

however, the conditions of the theorem in Sect. 1 are satisfied by system (3.3) and V, the 

equilibrium position is q-stable and q(t) has a finite limit as t - co. 

Note that condition (3.2) excludes the continuity of function Q. However it can be seen 
that the statements of the theorem in Sect.1 remain valid without the condition Of Continuity 
of function Xif one assumes that: a) function x(t,z) is measurable in the domain r, and for 
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any bounded closed domain L?c& there exists a summable function 7 (0 such that almostevery- 

where in D 11 X (t, 5) II< T (1): b) the solution of system (1.1) is understood in the sense given 
in /18/, i.e. the vector function z(t) determinate on the interval (tl,tJ is taken as the solu- 
tion of Eq.(l.l), if it is absolutely continuous and if for almost all tE (t1.h) andany a>0 
vector k(t)/at belongs to the smallest convex closed set containing all values of vector func- 
tion X(&z') when Z* runs through almost the entire d-neighborhood of point r(t) in space 2 
(at fixed t); c) function V(t,z) is continuously differentiable, and d) u?(t) = 0, v (t, 0) ea 0. 

In such case the condition of continuous dependence of solutions on initial data is not used 
in the proof of the theorem in Sect.1. System (3.3) and estimate (3.2) obviously satisfy 

these conditions. 
Conditions L,<O and L,(t, 0) = 0 taken together imply that the potential energy has a 

minimum when q=O for all t>O. The Lagrange function has the property that dLl& > 0, 
if, for instance, for any fixed generalized coordinates and velocities, the kinetic and poten- 
tial energies are, respectively increasing and decreasing functions of t. Condition (3.2) is 
satisfied by the dry friction forces /9/ 

- 4/ll Q’ II 9 Q’ + 0 
Q =(T(t,q), q*=o 

--Fi sign qt.7 qt’ f 0 
’ Qi=(+i(t,q,‘l.h pi’=0 

(O<c==coIlst, O<F,=const, i=l, . . . . n) 

4. Let us consider the motion of a symmetric gyroscope in gimbals. Assume that the 
stationary axis of the external gimbal ring rotation is vertical, and that of the inner ring 
is horizontal. Let the center of mass of the gyroscope and inner gimble ring be located on 
the gyroscope axis of symmetry. The position of this system can be defined by the three 
Euler angles, viz. of nutation 0, precession $,and the gyroscope proper rotation cp/19/.We 
assume that besides forces of gravity the gyroscope is subjected to friction forces at the 
gimbal ring axes. 

The sufficientconditionof asymptotic stability of vertical rotations e=w=O,y =eonst, 
e'=const in the presence of viscous friction with total dissipation appeared in /19/. The 
gyroscope motion was investigated in /20/ in the presence of dry friction forceswhosemoments 
about the gimbal ring axes are defined by formulas 

where D,,D, are positive constants, s is the mass of the gyroscope (rotor) and inner gimbal 
ring, A,A,C are the gyroscope principal moment of inertia, and A,,B,,C, are the principal 
moments of inertia of the inner gimbal ring about the axes of the coordinate system rigidly 
attached to that ring. It will be readily seen (see /20/j that such friction forces at 
fairly small 1 tlo 1 admit the motion tl= 6&, =I const, 0' =$' = 0, cp' = coast, that represents permanent 
rotation about an axis at angle tl=9, to the vertical. It was shown in /20/ that when inthe 
position O=O the center of mass of the gyroscope and inner gimbal is under the commoncenter 
of gimbals, these motions are stable. 

Let us investigate the conditions of "asymptotic stopping" of a gyroscope. Disregarding 
the ignorable coordinate, the equations of motion are of the form (where R is the Routh func- 
tion /19/) 

+2&!&-_~+Mt (4.1) 

d aR aR 
dt-@?-F=M" 

2R = .4 (fP + 9" sins 0) + A,kP + Bl?p’a sin% + C&P cos” 0 + ABY!=, 8’ = &, (cos 8 + 1) 

It is know that 
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Moreover function R + P is bounded below along the motions,hence 
can state that 8' (t) -0, q,‘(t) +O as t --fm. 

~IA.I<-,il~~,~<-. We 

Let us assume, for example, thzt 8'(t) approach- 
es zero as t ecu. There exist then &'< tk” < tkil’ (k = 1,2, . . .) and 6 > 0 such that as tk'-- 

tlr” 

( s e..(t)dtl=jO.(tkl)-e’(tr’)l=6 (k---Jm) 
‘Ff’ 

which contradicts 

On the other 

the boundedness of 8" (to). 
hand system (4.1) satisfies the conditions of statement b) of Corollary 

2.2, hence 0 (t) +const, Y (t) +const , and because of the ignorable integral 'p' + Q'cos e = 70 
function q’(t) -+const as t *m. 

The above proves the following statement: when dry friction forces with moments M, and 
actonthe gimbal ring axes, 

F?(t) +o, 
then for any initial conditions 8 (t) +00nst,+ (t) -+const, e- (t), 

(P’(t)-+ const as t-+00, i.e. every motion asymptotically approaches one of the 
permanent rotations 8 = const, 8' =+' = 0, q’ = const. 
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